Graceful Labeling of Arbitrary Supersubdivision of Grid graph and Cyclic snake

A. Elumalai, A. Anand Ephremnath

Abstract— Aim of this paper is to prove the graph obtained by arbitrary supersubdivision of grid graph $P_s \times P_t$ is graceful and the arbitrary supersubdivision of *k*-block generalized cyclic snake with string-1 is graceful. Also we define a *k*- block generalized cyclic snake in the increasing length and we prove that such graph is graceful.

Index Terms— Arbitrary supersubdivision, Generalized cyclic snake, Graceful labeling, Grid graph.

1 INTRODUCTION

We begin with simple, finite, undirected and connected graph G(p, q). A graceful labeling of G is an injection from the set of its p vertices to the set $\{0, 1, 2, ..., q\}$ such that the values of the edges are all integers from 1 to q, the value of an edge being the absolute value of the difference between the integers attributed to its end vertices.

Sethuraman and Selvaraju [1] have introduced a new method of construction called supersubdivision of a graph and showed that arbitrary supersubdivisions of paths are graceful. They conjectured that paths and stars are the only graphs for which every supersubdivision is graceful. Barrientos [2] disproved this conjecture by proving that every supersubdivision of a y-tree is graceful. Sethuraman and Selvaraju [1] proved that every connected graph has some supersubdivision that is graceful. They pose that question as to whether some supersubdivision is valid for disconnected graphs [3]. After that Sekar and Ramachandran [4] proved that arbitrary Supersubdivision of disconnected graph is graceful.

The planar grids $P_m \times P_n$ are graceful was proved by Acharya and Gill [5] in 1978. Jungreis and Reid [6] showed that the grids $P_m \times P_n$ are harmonious when $(m,n) \neq (2,2)$. Vaidya, Dani, Vihol and Kanani [7] proved that an arbitrary supersubdivision of grid graph $P_s \times P_t$ is strongly multiplicative and they pose that question as to whether parallel result can be investigated corresponding to other graph labeling techniques [3]. Shiu and Kwong [8] determine the friendly index of the grids $P_2 \times P_n$.

A kC_n -snake is a connected graph with k blocks, each of the blocks is isomorphic to the cycle C_n , such that the blockcut-vertex graph is a path. Following Chartrand, Lesniak[9], by a block-cut-vertex graph of a graph G we mean the graph whose vertices are the blocks and cut-vertices of G where two vertices are adjacent if and only if one vertex is a block and the other is a cut-vertex belonging to the block. This graph was first introduced by Barrientos[2] and he proves that kC_4 snakes are graceful and later it was discussed by Badr[10] as generalization of the concept of triangular snake introduced by Rosa[11]. Also Badr [10] proved that kC_4 -snake, linear kC_n -snake, even kC_8 -snake and even kC_{12} -snakes are odd graceful. Lourdusamy and Seenivasan [12] proved that kC_n snakes are means graphs and every cycle has a supersubdivision that is a mean graph. They defined a generalized kC_n snake in the same way as a C_n -snake except that the sizes of the cycle blocks can vary. They also proved that generalized kC_n -snakes are mean graphs. For detail survey on graph labeling in the field of arbitrary supersubdivision one can refer to Gallian [3], Kathiresan and Amutha [13-14]. We call a kC_n snake as a k- block cyclic snake and a generalized kC_n -snake as a k- block generalized cyclic snake.

A kC_n -snake contains M = nk edges and N = (n-1)k+1vertices. Among these vertices, k - 1 vertices have degree 4 and the other vertices of degree 2. Let $w_1, w_2, \ldots, w_{k-1}$ be the consecutive cut-vertices of G. Let d_i be the distance between w_i and w_{i+1} in G for $1 \le i \le k-2$, the string $(d_1, d_2, \ldots, d_{k-2})$ of integers characterizes the graph G in the class of n-cyclic snakes.

For example, refer Figure-1 for a $2C_4$ -snake with a cut vertex. Now we can construct two different $3C_4$ -snake from a $2C_4$ -snake, the first is with string-1 (Figure-2) and the second is with string-2 (Figure-3).

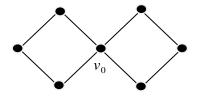


Figure-1: 2*C*₄ -snake with a cut vertex

[•] Department of Mathematics, Valliammai Engineering College, Kattankulathur- 603203, India.

Department of Mathematics, Surya Group of Institutions, School of Engineering and Technology, Vikiravandi, Villupuram – 605652, India. E-mail: anand.ephrem@gmail.com

International Journal of Scientific & Engineering Research Volume 6, Issue 3, March-2015 ISSN 2229-5518

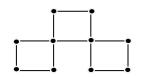


Figure-2: 3C₄ -snake with string- 1

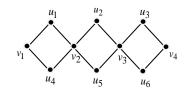


Figure-3: 3C₄ -snake with string- 2

In this paper we prove the following results for graceful labeling.

- 1. The graph obtained by arbitrary supersubdivision of grid graph $P_s \times P_t$ is graceful.
- 2. An arbitrary supersubdivision of generalized kC_n -snake with string-1 is graceful.
- 3. The generalized kC_n -snake in the increasing odd length with string-1 is graceful.
- 4. An arbitrary supersubdivision of triangular snake with length k is graceful.

Definition 1.1

Let G be a graph with q edges. A graph H is called a supersubdivision of G if H is obtained from G by replacing every edge e_i of G by a complete bipartite graph K_{2,m_i} for some m_i ,

 $1 \le i \le q$ in such a way that the end vertices of each e_i are merged with the two vertices of 2-vertices part of K_{2,m_i} after

removing the edge e_i from graph G. A supersubdivision H of G is said to be an arbitrary supersubdivision of G if every edge of G is replaced by an arbitrary $K_{2,m}$ (m may vary for each edge arbitrarily).

Definition 1.2

Let G(p, q) be a generalized kC_n -snake with string-1 and $(n_1, n_2, ..., n_k)$ be the string length of cycles of G, then G contains contains $q = \sum_{l=1}^{k} n_l$ edges and $p = \sum_{l=1}^{k} n_l - (k-1)$ vertices. Name the vertices of G as $V_1, V_2, ..., V_p$ as shown in Figure-4, we observe that there is a shortest path $V_1, V_{n_1}, V_{n_1+n_2-1}, V_{n_1+n_2+n_3-2}, ..., V_p$ along the cut vertices of G, we can call it as the Cut vertex path of G and there is a Hamiltonian path $V_1, V_2, ..., V_p$ as shown in Figure-4 which covers all the vertices of G. It is clear that the Cut vertex path and Hamiltonian path are distinct in G and the union of Cut vertex path and Hamiltonian path covers all the edges of G.

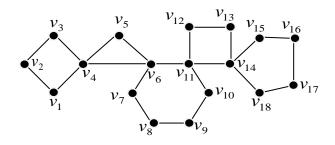


Figure-4: Generalized $5C_n$ -snake with string length

 $(n_1, n_2, n_3, n_4, n_5) = (4, 3, 6, 4, 5)$

Definition 1.3

If $(n_1, n_2, \ldots, n_k) = (3, 4, \ldots, k+2)$ is the string length of a generalized kC_n -snake then it is said to be a generalized kC_n -snake in the increasing length.

If $(n_1, n_2, ..., n_k) = (3, 5, ..., 2k+1)$ is the string length of a generalized kC_n -snake then it is said to be a generalized kC_n -snake in the increasing odd length.

2 MAIN RESULTS

In this paper we prove our main results that the graph obtained by arbitrary supersubdivision of grid graph $P_s \times P_t$ is graceful and the arbitrary supersubdivision of k-block generalized cyclic snake with string-1 is graceful.

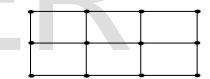


Figure-5: Grid graph $P_4 \times P_3$

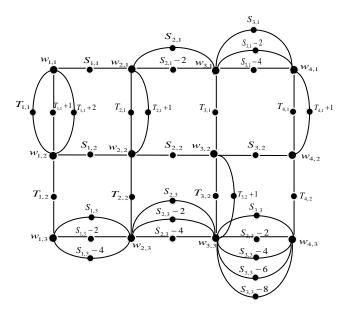


Figure-6: Some Arbitrary Supersubdivision of $P_4 \times P_3$

International Journal of Scientific & Engineering Research Volume 6, Issue 3, March-2015 ISSN 2229-5518

Theorem 2.1: The arbitrary supersubdivision of grid graph is graceful. Proof

Let G(p,q) be a grid graph $P_s \times P_t$. Name the vertices of G by $w_{i,j}$, $1 \le i \le s \And 1 \le j \le t$. Observe that there are t times of P_s paths say $P_s^{(j)}$, $1 \le j \le t$ and s times of P_t paths say $P_t^{(i)}$, $1 \le i \le s$. Let $P_s^{(j)}$ be a path with successive vertices $w_{1,j}, w_{2,j}, \ldots, w_{s,j}$ for $1 \le j \le t$ and let $P_t^{(i)}$ be a path with successive vertices $w_{i,1}, w_{i,2}, \ldots, w_{i,t}$ for $1 \le i \le s$. Let $e_{i,j}$ be the edges of the paths $P_s^{(j)}$ having end points $w_{i,j} \And w_{i+1,j}$ for $1 \le i \le s - 1 \And 1 \le j \le t$ and let $e_{i,j}'$ be the edges of the paths $P_t^{(i)}$ having end points $w_{i,j} \And w_{i,j+1}$ for $1 \le i \le s \And 1 \le j \le t - 1$.

Let *H* be an arbitrary supersubdivision of *G*, that is every edge $e_{i,j}$ is replaced by a complete bipartite graph $K_{2,m_{i,j}}$, where $m_{i,j}$ is any positive integer and every edge $e'_{i,j}$ is replaced by a complete bipartite graph $K_{2,n_{i,j}}$, where $n_{i,j}$ is any positive integer. Note that the two vertices of the 2vertices part of $K_{2,m_{i,j}}$ get the labels $w_{i,j} \& w_{i+1,j}$ and $S_{i,j}, S_{i,j} - 2, S_{i,j} - 4, \ldots, S_{i,j} - 2(m_{i,j} - 1)$ are assigned to the $m_{i,j}$ vertices of $m_{i,j}$ -vertices part of $K_{2,m_{i,j}}$ [Refer Figure-6 and Figure-7]. Also the two vertices of the 2-vertices part of $K_{2,n_{i,j}}$ get the labels $w_{i,j} \& w_{i,j+1}$ and $T_{i,j}, T_{i,j} + 1, \ldots, T_{i,j} + n_{i,j} - 1$ are assigned to the $n_{i,j}$ vertices of $n_{i,j}$ -vertices part of $K_{2,n_{i,j}}$ [Refer Figure-6 and Figure-7]. Let *N* be the number of vertices and *M* be the number of edges of *H*, where *N* and *M* are defined below.

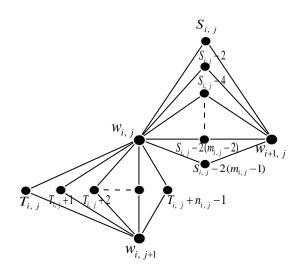


Figure-7

Let

•
$$M_j = \sum_{i=1}^{s-1} m_{i,j}, 1 \le j \le t$$

• $R_j = \sum_{i=1}^{s} n_{i,j}, 1 \le j \le t-1$
• $E_1 = M = 2 \left[\sum_{l=1}^{t} M_l + \sum_{l=1}^{t-1} R_l \right]$
• $N = st + \frac{M}{2}$
• $E_j = E_{j-1} - 2M_{j-1} - R_{j-1}, 2 \le j \le t$

Define

$$\begin{split} w_{i,j} &= (i-1) + \sum_{l=1}^{j-1} R_l , \ 1 \le i \le s \ , \ 1 \le j \le t \\ S_{i,j} &= E_j - 2 \sum_{l=1}^{i-1} m_{l,j} + i - 1, \ 1 \le i \le s - 1 \ , \ 1 \le j \le t \\ T_{i,j} &= E_{j+1} + \sum_{l=1}^{i-1} n_{l,j} + i \ , \ 1 \le i \le s \ , \ 1 \le j \le t - 1 \end{split}$$

It is clear from the above labeling that H has an injection from the set of its N vertices to the set $\{0, 1, 2, ..., M\}$ and the Medges of H have distinct labels from 1 to M. So H is graceful.

Example 2.2: By using Theorem 2.1, we can give graceful labeling for the grid graph which is in Figure-6. (Refer Figure-8 for the graceful labeling of the graph which is in Figure-6). It is clear that the graph has an injection from the set of its N(=45) vertices to the set $\{0, 1, 2, \ldots, M(=66)\}$ and the M(=66) edges of that graph have distinct labels from 1 to M(=66), so the graph is graceful.

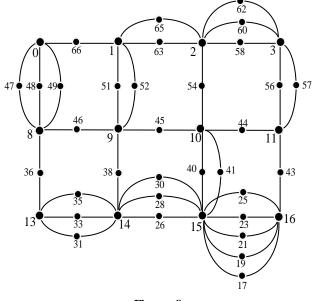


Figure-8

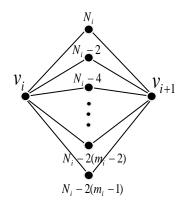
International Journal of Scientific & Engineering Research Volume 6, Issue 3, March-2015 ISSN 2229-5518

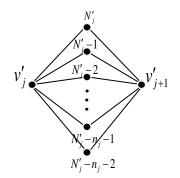
Theorem 2.3: From $n \ge 3$, there exist an arbitrary supersubdivision of k-block generalized cyclic snake with string-1 that is graceful for $k \ge 2$.

Proof

Let G(p, q) be the k- block generalized cyclic snake with string-1 and (n_1, n_2, \ldots, n_k) be the string length of cycles of G, then G contains $q = \sum_{l=1}^{k} n_l$ edges and $p = \sum_{l=1}^{k} n_l - (k-1)$ vertices. Name the vertices of G as V_1, V_2, \ldots, V_p as shown in be the cut vertex Figure-4. Let P'_{k+1} path $V_1, V_{n_1}, V_{n_1+n_2-1}, V_{n_1+n_2+n_3-2}, \dots, V_p$ with length k+1 along the cut vertices of G, we may name them as $V'_1, V'_2, \ldots, V'_{k+1}$ respectively and let P_p be the Hamiltonian path V_1, V_2, \ldots, V_p of G with length р. Let $e_i = v_i v_{i+1}, 1 \le i \le p-1$ denote the edges of the path P_p for $1 \le i \le p-1$ and let $e'_j = v'_j v'_{j+1}$, $1 \le j \le k$ denote the edges of the path P'_{k+1} .

Let H be an arbitrary supersubdivision of G, that is every edge e_i , $1 \le i \le p-1$ of the path P_p is replaced by a complete bipartite graph K_{2,m_i} where m_i is any positive integer and every edge e'_j , $1 \le j \le k$ of the path P'_{k+1} is replaced by a complete bipartite graph K_{2,m'_i} where $m'_j = n_j - 1, 1 \le j \le k$ is any positive integer. Note that the two vertices of the 2-vertices get the labels part of $K_{2,m}$ $v_i \& v_{i+1}$ and N_i , $N_i - 2$, $N_i - 4$, ..., $N_i - 2(m_i - 1)$ are assigned to the m_i vertices of m_i -vertices part of K_{2,m_i} as in Figure-9. Also the two vertices of the 2-vertices part of K_{2,m'_i} get the labels $v'_j \& v'_{j+1}$ and $N'_j, N'_j - 1, N'_j - 2, \dots, N'_j - n_j - 2$ are assigned to the m'_i vertices of m'_i -vertices part of K_{2,m'_i} as in Figure-10. Let N be the number of vertices and M be the number of edges of H, where N and M are defined below.



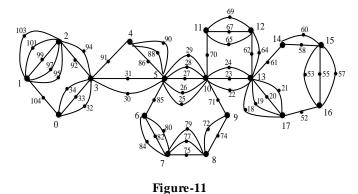


Define

$$\begin{split} M &= 2 \left[\sum_{i=1}^{N-1} m_i + \sum_{j=1}^k m'_j \right] \\ N &= p + \frac{M}{2} \\ V_i &= i - 1, \ 1 \le i \le N \text{ and } V'_1 = 0 \\ V'_j &= \left[\sum_{l=1}^{j-1} n_l - (j-2) \right] - 1, \ 2 \le j \le k + 1 \\ N_i &= M - 2 \sum_{l=1}^{i-1} m_l + (i-2), \ 1 \le i \le N - 1 \\ N'_j &= 2(N-1) - \sum_{l=1}^{j-1} m'_l, \ 1 \le j \le k \end{split}$$

It is clear from the above labeling that H has an injection from the set of its N vertices to the set $\{0, 1, 2, ..., M\}$ and the Medges of H have distinct labels from 1 to M. So H is graceful.

Example 2.4: Refer Figure-11 for the graceful labeling of some arbitrary supersubdivision of the graph which is in Figure-4.



Corollary 2.5: From $n \ge 3$, there exist an arbitrary supersubdivision of kC_n -snake with string-1 that is graceful for $k \ge 2$. **Proof:**

Let G(p, q) be the kC_n -snake with string-1 then G contains q = nk edges and p = (n-1)k+1 vertices. Let H be an arbitrary supersubdivision of G. By replacing the string length

IJSER © 2015 http://www.ijser.org values $n_1 = n_2 = \ldots = n_k = n$, the generalized kC_n -snake with string-1 will become a kC_n -snake with string-1. So by Theorem 2.3, it is clear that from $n \ge 3$, there exist an arbitrary supersubdivision of kC_n -snake with string-1 that is graceful for $k \ge 2$.

Note: Similarly we can prove an arbitrary supersubdivision of k-block generalized cyclic snake in the increasing length and also in the increasing odd length with string-1 are graceful for $k \ge 2$.

Corollary 2.6: An arbitrary supersubdivision of triangular snake with length k is graceful for $k \ge 2$.

Proof:

Let G(p, q) be the triangular snake with length k, then G contains q = 3k edges and p = 2k+1 vertices and let H be an arbitrary supersubdivision of G. By replacing the string length values $n_1 = n_2 = \ldots = n_k = 3$, the k- block generalized cyclic snake with string-1 will become triangular snake with length k. So by Theorem 2.3, it is clear that for $k \ge 2$, an arbitrary supersubdivision of triangular snake with length k is graceful.

Theorem 2.7: A k-block generalized cyclic snake in the increasing odd length with string-1 is graceful for $k \ge 2$.

Proof

Let G(p, q) be the k-block generalized cyclic snake in the increasing odd length with string-1 and name the vertices of G as V_1, V_2, \ldots, V_p as shown in Figure-4, then G contains

$$q = \sum_{l=1}^{k} n_l$$
 edges and $p = \sum_{l=1}^{k} n_l - (k-1)$ vertices.

Define

$$V_{2i-1} = i - 1, \ 1 \le i \le \frac{p+1}{2}$$
$$V_{2i} = q + 1 - i, \ 1 \le i \le \frac{p-1}{2}$$

It is clear from the above labeling that G has an injection from the set of its p vertices to the set $\{0, 1, 2, ..., q\}$ and the q edges of G have distinct labels from 1 to q. So G is graceful. For example see Figure-12.

Example 2.8: Refer Figure-12 for the graceful labeling of a 4-block generalized cyclic snake in the increasing odd length with string-1.

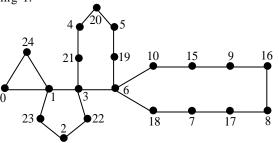


Figure-12

3 CONCLUSION

In this paper we have shown that the arbitrary supersubdivision of grid graph $P_s \times P_t$ is graceful and there exist an arbitrary supersubdivision of k- block generalized cyclic snake with string-1 is graceful for $k \ge 2$. From these results we extended our results that from $n \ge 3$, there exist an arbitrary supersubdivision of kC_n -snake with string-1 that is graceful for $k\ge 2$ and an arbitrary supersubdivision of triangular snake with length k is graceful for $k\ge 2$.

4 REMARKS

'Supersubdivision of a graph' can be used as a powerful operation to get larger size graphs from a given graph. We observe that, from the arbitrary supersubdivision of a grid graph and as well as from the generalized kC_n -snake, we can get some graphs with infinite length.

REFERENCES

- G. Sethuraman and P. Selvaraju, Gracefulness of arbitrary Supersubdivision of graphs, *Indian J. Pure Appl. Math.*, 1059-1064, (2001).
- [2] C. Barrientos, Graceful arbitrary supersubdivisions of graphs, *Indian J. Pure Appl. Math.*, 38, pp 445-450, (2007).
- [3] Joseph A. Gallian, Dynamic Survey of Graph Labeling, *The Electronic Journal of Combinatorics*, 16, (2013).
- [4] C. Sekar and v. Ramachandran, Graceful labelling of arbitrary Supersubdivision of disconnected graph, *Ultra Scientist* Vol. 25(2)A, pp 315-318, (2013).
- [5] B. D. Acharya and M. K. Gill., On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs, *Indian* J. Math., 23, pp 81-94, (1981).
- [6] D. Jungreis and M. Reid, Labeling grids, Ars Combin., 34, pp 167-182, (1992).
- [7] S. K. Vaidya, N. A. Dani, P. L. Vihol and K. K. Kanani, Strongly Multiplicative Labeling in the context of arbitrary Supersubdivision, *Journal of Mathematics Research, Vol.* 2, No. 2, May 2010.
- [8] W. C. Shiu and H. Kwong, Full friendly index sets of $P_2 \times P_n$, Discrete Math., **308**, pp 3688-3693, (2008).
- [9] G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and hall/CRC, Boca Raton, London, New York, Washinton, D. C., 1996.
- [10] E. M. Badr, On the Odd Gracefulness of Cyclic Snakes With Pendant Edges, International journal on applications of graph theory in wireless ad hoc networks and sensor networks (GRAPH-HOC) Vol.4, No.4, December 2012.
- [11] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs, *International Symposium*, Rome, July (1966), Gordon and Breach, New York and Dunod Paris(1967), pp 349-355, and Cyclic Steiner Triple Systems and Labelings of Triangular Cacti, *Scientia*, 5, pp 87-95, (1967).
- [12] A. Lourdusamy and M. Seenivasan, Mean labeling of cyclic snakes, AKCE Int. J. Graphs Combin., 8, pp 105-113, (2011).
- [13] K. M. Kathiresan and S. Amutha, Arbitrary supersubdivisions of stars are graceful, *Indian J. Pure Appl. Math.*, 35(1), 81-84 (2004).
- [14] K. M. Kathiresan, Subdivisions of ladders are graceful, Indian J. Pure Appl. Math., pp 21-23, (1992).